Hole Sizes

<table>
<thead>
<tr>
<th>millimetres</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>Hole Ø</td>
</tr>
<tr>
<td>minimum</td>
</tr>
</tbody>
</table>

Note: 2 holes required - one each end

Larger Holes > Better Drainage > Higher Quality

Inadequately vented fabrications may explode when immersed in molten zinc.
Sealed sections must be vented for reasons of safety and drainage.

Vent holes should be placed no more than 10 mm from their respective sealed ends.

On longer members, the vent and drain holes must be positioned at diagonally opposite ends.

The holes can be located in the top or the side or the end.
Handrails must be vented at each closed end and at each bend. The vents can consist of drilled holes or slots. The slots must have a minimum length of 40 mm.
Fully welded plates having an area in excess of 100 cm2 require relief holes.

The holes must be sealed with silicon in order to minimise the entry of pickling liquid which can vaporise in the hot zinc bath.

Relief holes must be sealed with silicon prior to delivery to Korvest Galvanisers.

The relief holes must be a minimum of 6 mm in diameter.
With hollow section fabrications, provision must be made for venting and draining.

Holes or notches must be placed within 10 mm of the sealed end of the section.

On vertical members, a drilled hole or ‘V’ notch should be provided at each end of the section. Each hole must be located on opposite sides of the section.
Drain holes located away from the edge of the end plates lead to some pickling liquid and molten zinc remaining in the tube. Retained zinc adds to the weight of the component. Retained pickling liquid can vaporise in the galvanising bath which can damage the structure or cause an explosion.

For complex shapes contact Korvest Galvanisers.
Dead pockets can lead to air locks, pooling of pickle liquid and zinc build up.

The high temperature in the galvanising bath causes the pickle liquid to vaporize resulting in misses and excess ash.

Eliminating dead pockets will lead to a cleaner and more blemish free finish.

Stiffeners should have the corners cropped in order to eliminate dead pockets.

Large corner crops allow the molten zinc to freely drain away.
Base Plates

![Diagram of base plates with correct and incorrect designs]

Korvest Galvanisers

8
Hanging Points

Length

up to 1.5 m → one hanging point on one end

above 1.5 m → one hanging point on both ends
Due to the expansion and contraction of the steel during the galvanising process, there is a risk of distortion.

A weld should be placed only in every alternate space or on every second wire, depending on the construction.
Paint, Oil and Grease

Paint, oil and grease interferes with the galvanising process. Surface contaminants must be removed before galvanising can proceed. Cleaning results in time delays and can incur extra charges.

Distortion

Distortion is an ever present risk during galvanising. It results from the relieving of stresses which have built up during the steel manufacturing process and also during fabrication. Structures fabricated from sections having different thicknesses and large surface areas are particularly prone.

For assistance in design, please contact Korvest Galvanisers.
Centrifuge

Maximum Length 700 mm
Dipping Dimensions

Single Dip

<table>
<thead>
<tr>
<th>Beams & Pipes</th>
<th>13.8 m long</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames</td>
<td>12.0 m long</td>
</tr>
<tr>
<td></td>
<td>1.8 m deep</td>
</tr>
<tr>
<td></td>
<td>1.4 m wide</td>
</tr>
</tbody>
</table>

Double Dip

<table>
<thead>
<tr>
<th>Beams & Pipes</th>
<th>15.0 m long</th>
</tr>
</thead>
<tbody>
<tr>
<td>max beam depth of 1.0 m</td>
<td></td>
</tr>
<tr>
<td>Frames</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>up to 7.0 m</td>
</tr>
<tr>
<td>max depth</td>
<td>3.8 m</td>
</tr>
<tr>
<td>length</td>
<td>7.0 - 12.0 m</td>
</tr>
<tr>
<td>max depth</td>
<td>3.0 m</td>
</tr>
</tbody>
</table>